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1 General Considerations of Statistical Power

When is an observed deviation just a statistical fluctuation rather than ev-
idence for a real effect? This most general problem confronts us in trying
to identify anomalies in digital x-ray images. In ideal circumstances, the
fluctuations are truly due to statistical effects and are thus easily predicted.
We can also predict with confidence the effect of small bodies superimposed
over a locally uniform background. Most simply, if we expect to detect n
x-rays and see only n — v, the size of the deviation, measured in standard
deviations, is v/4/n, or

Xt = - (1)

Suppose that in addition to registering counts, we can measure some other
variable, say, position, time, energy, etc., which we indicate by z. We can bin
the events in z, so that we expect n; between z; and z;, ny between z; and
29, and so on. Similarly, if the extra source (or for x-rays, actually, a sink) is
present, we expect instead n; — vy, etc., where we suppose that v; < n;. If
we determine y? with the extra source present, assuming by hypothesis that
it is absent, we find, on average
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The extra information we obtained by measuring the binned variable z
is X3 — x?. We can characterize this extra information by introducing two
vectors,
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In terms of these
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and, continuing with the geometrical description, we define
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The parameter cos # characterizes how much the direction of fluctuations
(the vector a) deviates from the direction of the putative new effect (the

vector b). We can characterize the relative information available in x3 not
already present in x? as

cos b =

2
X—; = cos’b,
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The actual value of cosf depends on the binning pattern as well as the
underlying distributions of n and v as functions of z. The maximal infor-
mation available is obtained by going to the continuum limit, with infinitely
fine binning. This produces the minimal value of cosf, corresponding the
maximal amount of new information. It is easy to see that the replacements
we need are
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The latter form is particularly suggestive. It is clear that cos?#,,;, is geo-

metrical in the sense that it doesn’t depend on the normalization of n(z) or
v(z). If v(z) is proportional to n(z), then cos?f = 1.
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2 Application to Digital X-ray Imaging

2.1 Using detailed energy and position information to
enhance absorption measurements

Suppose we could not just count every x ray, but also measure its energy. Now
let the source produce a flux ¢(FE). If there is an absorber with photocross-
section o(F) and depth z so that the attenuation is exp(—zo(E)), the re-
sulting flux is ¢(F) = ¢(E) exp(—zo(E)). This represents dn/dz, where z
here is energy. The addition of a little absorber of type b will introduce a
factor exp(—2,0"(E)) ~ (1 — x,0°(F)), so that
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In particular
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Here < > indicates an average over the spectrum, ¢(E). In the case of
calcium, the cross-section of(E) varies quite nearly as 1/E®, say o"(E) =
Acq/E?, over the region of interest.

In practice, the flux rises from zero starting around 20 keV and falls back
to zero around 60 keV, if the source is set with 60 kVp. See Fig.(??). We
adopt a toy model spectrum, normalized to unity:
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This is shown in Fig(??).
Some information about the x-ray energies can be obtained by measuring
where they interact in a detector. In this instance, the variable z becomes
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Figure 1: The spectrum from a tungsten source with 60 kVp and 2.43 mm
of aluminum filter (Handbook of Mammographic X-ray Spectra, p. 41),
followed through 1 ¢m, 2 ¢m, 3 ¢m, 5 ¢cm, and 10 cm of “body” material,
with an effective 7 = 7.4.

the depth in the detector, z, which has units (area)~'. The corresponding
functions are
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Here o(F) is the photo-cross-section in the silicon detector, while o®(F) is
again the cross-section in calcium. We see immediately that
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There remains to calculate
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We continue with our toy model for ¢, and take o(E) also to vary as 1/E?,
o(E) = A(Si)/E*. The calculations of n and v are, of course, unchanged.
In addition, we have
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The results are shown in Fig. (77?).
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Figure 2: The ratio x?/x3 = cos® # as a function of the ratio r = Fy00/ Emin,
where E,,,, and FE,,;, are the upper and lower ends of the x-ray spectrum,
Eq. (??). The full line corresponds to measurement of the actual energy of
each x-ray, while the dashed line corresponds to measuring the position of
the x-ray’s interaction in the detector. In both cases, it is assumed that the
measurements are perfect. The lower the value of cos? , the more information
is being provided by the energy or position measurement.



2.2 Distinguishing calcium from ordinary tissue using
energy and position measurements

Suppose we know we have a significant deviation from background. We wish
to determine whether it is due to substance a or substance b. In our range of
interest, 20 - 60 keV and 6 < Z < 20, the photo-cross-section in barns can
be approximated by

o=24152*E"% 4+ 0.567 (20)

where FE is measured in keV. See Fig. (?7). Suppose, now, that the total
number of events in the deviation is AN. This could be due to z, of substance
a or zy of substance b. The units for z, and xz, are atoms/barn. Their values
are determined by

AN = Nz, /dEa(E)aa(E) — Nag, < 0% >

AN = Nu / dEG(E)o*(E) = Nz, < 0 >
(21)

Can we distinguish the two alternatives on the basis of detailed measure-
ments of the energy or position distribution of the events?

Let us start with the hypothesis that the cause is substance a. Now if, in
fact, the cause is substance b, we should see a deviation from our hypothesis
that can be quantified by

dve  duy
= N/dEW (22)
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Altogether, we can write
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Figure 3: The photo-cross-section for calcium, sulfur, silicon, oxygen, and
carbon for energies between 10 and 50 keV. The curves are a fit to the
theoretical points shown as crosses. The fit is given by o = 24.152429F 3 +
0.56Z, where o is in barns and E is in keV.
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See Fig. 77.



For a specific example, suppose F,,;, = 20 keV and F,,,, = 60 keV. We
find for a=oxygen and b=calcium

<ot> = /dEa(E)aa(E) — 7.8 barns
<ob> = / dEG(E)o*(E) = 166. barns (25)

and
xp/r, = 0.047 (26)

Numerically, we find

(AN)?
N

One millimeter of oxygen at a density of 1 g/cm? gives 3.75x 1072 atoms/barn.
Multiplying by 7.8 barns, the average cross section, we get an interaction
probability of 2.9x107? per millimeter. If N = 10°, then x? = (0.029)* x
10° = 84 and the energy measurement separation of a and b has y? = 14.

Next consider what can be achieved if we measure only position. We
suppose that we can measure precisely the distribution of “excess” events as
a function of x. We have

X5 =017y =0.17 (27)

dve _ dvy\2
dx
[dE¢e " o(0® — ;—Zab)]Q
[dEge 70
, [ U dEGe 7 o(o" — moh)?
= Xi /dr 2 Y 7(1
: <o >2 [dEgpe o
In Fig. (??) we show dv/dz. Because [dEG(E)[c® — (z,/xp)0?] = 0, the
integrand must vanish somewhere. In Fig. (?7) we see that this occurs at

2~ 0.02 barn~!, i.e. 4 mm of silicon.
Numerically, we find

= NTZ/dI‘[

(28)

X2 =0.022y2 29
x 1

In the case considered above, with N = 10° and x? = 84, we have y2 =
1.84, which may not seem impressive, but this is for the equivalent of 47um

of calcium! Note that x2 scales as 22 or x7.
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Figure 4: The differential energy distribution of x rays from oxygen (solid)
and calcium (dashed). The calcium cross section is scaled down by the ratio
of the mean cross sections of oxygen and calcium, so that it represents the
same total absorption, a reduction by a factor 0.047. The quantity plotted
for oxygen is (1/x,)dv,/dE in barns/keV, with the analogous scaled quantity
plotted for calcium. The incident spectrum is as given in the text, with a
range from 20 keV to 60 keV.
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Figure 5: The differential distribution in position for x rays interacting in a
silicon detector. The deficits due to a deposit of oxygen (solid) or a deposit of
calcium (dashed) are shown. The calcium cross section is scaled down by the
ratio of the mean cross sections of oxygen and calcium, so that it represents
the same total absorption, a reduction by a factor 0.047. The quantity plotted
for oxygen is (1/z,)dv,/dz, in barns®. The incident spectrum is as given in
the text, with a range from 20 keV to 60 keV. The density of silicon is
0.049 /barns/cm~".
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3 Dual-Energy Scheme

It might be possible to generate an x-ray beam whose spectrum is concen-
trated at two energies. We consider here the discriminating capability of
such a beam in the approximation that the spectrum consists of two delta
functions in energy, the energies being F, and Fgz. The fraction of the flux
at E, is o and that at Eg is 8 = 1 — . Using the formulas of the previous
sections and the flux

O(E) = ad(E — E,) + B(E — Ep) (30)

we find the results shown in Fig. (77).
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Figure 6: The ratio of x% to x7 (solid) and ratio of x2 to x? (dashed) as a
functions of «, the fraction of the spectrum at 20 keV (the remainder being
at 60 keV).

13



Consider a practical example with 20% of the spectrum at 20 keV and 80%
at 60 keV. Suppose we have 50 pum of calcium and we want to distinguish
it from an amount of ordinary (compressed?) tissue with the same total
absorption. Suppose the detector has two segments, the first 0.4 cm long,
the second effectively infinitely long. The 0.4 ¢m of silicon amounts to 0.0196
b~! as a number density.

The relevant cross-sections are shown in Table ?77.

20 keV (b) | 60 keV (D)

o(S1) 204 15

o(Ca) 890 11
o(0) 23 5.2

Table 1: Cross-sections in barns for x rays on silicon, calcium, and oxygen,
the last being chosen as representative of body tissue.

Of the low energy component, only exp(—0.0196 x 204) = .0198 makes it
to the second segment, while of the high energy component, exp(—0.0196 x
15) = 0.745 does. In this way we find that 0.4 of the total spectrum stops in
the first segment and 0.6 in the second.

The 50 pm of calcium amounts to a number density of 1.14 x 10~* b1,
This depletes 1.14 x 10™* x 890 = 0.101 of the low energy component and
1.14 x 107* x 44 = 0.0050 of the high energy component. Altogether, 0.024
of the beam is attenuated. An equivalent depth of “oxygen” would be 2.77 x
1073~ L

A straightforward calculation yields Table ?77.

To be even more concrete, consider N = 10° x rays. The depletion
amounts to 0.024 x 105, a 24 sigma effect. In terms of the quantities discussed
above, we have
(0.024 x 105)?

106

The x? for the hypothesis that the depletion is due to “oxygen” when it

is really due to calcium is expected to be

N =576 (31)

, _ [(154— 2.00) x 10' | [0.88 — 0.34) x 10']
Xz = 0.4 x 109 0.6 x 10°

=113 (32)
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segment 1 | segment 2

total 0.4 0.6

depleted by calcium 0.0209 0.0034
depleted by “oxygen” 0.0154 0.0088

Table 2: Fraction of the beam absorbed in the two segments, the first of which
is 0.4 cm deep. The beam is 20% 20 keV and 80% 60 keV. The amount of
“oxygen” is adjusted to give the same total depletion as 50 pum of calcium.

The ratio x2/x7 = 0.20 is slightly less than predicted by our model with
an infinite number of segments, rather than two.
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